设为首页收藏本站

华讯行业社区

 找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 1059|回复: 1
打印 上一主题 下一主题

二氧化钛(钛白粉)

[复制链接]
跳转到指定楼层
楼主
发表于 2008-5-23 12:09:00 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
二氧化钛(钛白粉)
  d( o* w1 g! I) f
9 T5 g/ g' g2 L1 }3 |/ {4 s( B8 N6 u# R7 ^9 m) d/ A+ q
CAC关于二氧化钛(钛白粉)的使用规定+ c$ c7 d$ ]0 {5 Z
GSFA Online
: Y0 i) k4 j/ Z% B/ A+ Z  FFood Additive Details
3 }* J- ]3 k6 Y% X9 R6 aTitanium Dioxide (171): x9 F+ _: |- }9 I3 w! C& m
Number Food Category  
  t, A: e! i- P  01.1.2 Dairy-based drinks, flavoured and/or fermented (e.g., chocolate milk, cocoa, eggnog, drinking yoghurt, whey-based drinks)  / f4 {1 T. W- X% n( H# U
  01.3 Condensed milk and analogues (plain)  
+ y( h' P; x+ U  01.4.3 Clotted cream (plain)  9 X2 t# H- e( `' S, ~1 ~  ?
  01.4.4 Cream analogues  ( U% D! R- j" R# z# Q# Z: G7 _
  01.5 Milk powder and cream powder and powder analogues (plain)  
$ Z( F% P- y$ V, T% B& f  P* E  01.6 Cheese and analogues  
+ Z5 U" `8 x0 |' P  01.7 Dairy-based desserts (e.g., pudding, fruit or flavoured yoghurt)  
8 i- c' E: t+ r+ {3 i  01.8 Whey and whey products, excluding whey cheeses  
% P" ]/ c. l- A( |  02.2.1.2 Margarine and similar products   5 u9 Q- e2 G1 _1 R
  02.2.1.3 Blends of butter and margarine  
5 f  Y. e5 B' R5 @  ]+ o: J' ?  02.2.2 Emulsions containing less than 80% fat   
* R% J8 O  V' m( [) z; Y  02.3 Fat emulsions maily of type oil-in-water, including mixed and/or flavoured products based on fat emulsions   & O! s* }' m/ A2 W4 c& G* |
  02.4 Fat-based desserts excluding dairy-based dessert products of food category 01.7  
9 e. u2 t; P3 O5 G) S  03.0 Edible ices, including sherbet and sorbet    G" y" k+ d: ]
  04.1.2 Processed fruit  0 H1 h# [: @/ W. o7 z: p
  04.2.2.2 Dried vegetables (including mushrooms and fungi, roots and tubers, pulses and legumes, and aloe vera), seaweeds, and nuts and seeds  
8 l, d# K0 X" Z! o' w3 D3 m0 R$ N$ Q  04.2.2.3 Vegetables (including mushrooms and fungi, roots and tubers, pulses and legumes, and aloe vera) and seaweeds in vinegar, oil, brine, or soy sauce  
" q1 i' T. S  u) y8 o  04.2.2.4 Canned or bottled (pasteurized) or retort pouch vegetables (including mushrooms and fungi, roots and tubers, pulses and legumes, and aloe vera), and seaweeds  0 l4 z5 `! ]: V) x
  04.2.2.5 Vegetable (including mushrooms and fungi, roots and tubers, pulses and legumes, and aloe vera), seaweed, and nut and seed purees and spreads (e.g., peanut butter)  
, f. h5 l2 }8 c/ `' z  04.2.2.6 Vegetable (including mushrooms and fungi, roots and tubers, pulses and legumes, and aloe vera), seaweed, and nut and seed pulps and preparations (e.g., vegetable desserts and sauces, candied vegetables) other than food category 04.2.2.5  
$ y3 ~0 Y4 F6 F' F& d  04.2.2.8 Cooked or fried vegetables (including mushrooms and fungi, roots and tubers, pulses and legumes, and aloe vera), and seaweeds  
# B3 E. \) z! ^6 R. T. i) _+ Q  05.0 Confectionery  
. Z2 b: r; e3 m* I4 J) h# k  06.3 Breakfast cereals, including rolled oats  
9 @4 L  h  c6 M1 b" K* k- e; Z4 |  06.4.3 Pre-cooked pastas and noodles and like products  ! r" u' @5 D4 z- N6 P9 D
  06.5 Cereal and starch based desserts (e.g., rice pudding, tapioca pudding)  & v2 i) w8 N7 n  e, d/ M
  06.6 Batters (e.g., for breading or batters for fish or poultry)  + D7 U# `, S% K! M" U5 H  p
  06.7 Pre-cooked or processed rice products, including rice cakes (Oriental type only)  
6 n# `) o3 ?' h2 m0 n7 t6 h  06.8 Soybean products (excluding soybean products of food category 12.9 and fermented soybean products of food category 12.10)    q3 K% ?8 e9 A& E( p' T
  07.0 Bakery wares  
  n9 g" T* }! L1 B6 j( I" Z9 w, s  08.2 Processed meat, poultry, and game products in whole pieces or cuts  1 `5 G3 |. ^, m8 R: n/ e* G
  08.3 Processed comminuted meat, poultry, and game products  
) Y1 y: I: x6 Z# r) L7 h  08.4 Edible casings (e.g., sausage casings)  ( z: T; V1 W: v. V; I; J
  09.3 Semi-preserved fish and fish products, including mollusks, crustaceans, and echinoderms  ) T1 d: U2 |7 _$ s' G
  09.4 Fully preserved, including canned or fermented fish and fish products, including mollusks, crustaceans, and echinoderms  
& c# T1 f$ S1 |  Y" S, R  o  10.2.3 Dried and/or heat coagulated egg products  
2 q; |+ _6 f: o) s+ p  10.3 Preserved eggs, including alkaline, salted, and canned eggs  ' {. S0 \. i' @7 Y5 T* \
  10.4 Egg-based desserts (e.g., custard)  
, c9 w3 I7 `& G) p  11.6 Table-top sweeteners, including those containing high-intensity sweeteners  
/ z: `. b- u3 B, [- V  12.2.2 Seasonings and condiments  
7 P3 y- f; ]3 u  12.3 Vinegars  
# c% ~4 ~5 V  N/ c1 @# F! s  12.4 Mustards  
' c' W: r2 D2 r0 m! ^5 E2 y  @  12.5 Soups and broths  
5 z% q  R: Y. @  12.6 Sauces and like products  , n/ ]- P0 w1 `' t; `3 C* y
  12.7 Salads (e.g., macaroni salad, potato salad) and sandwich spreads excluding cocoa- and nut-based spreads of food categories 04.2.2.5 and 05.1.3  & Y4 Q. R5 R; {" b+ X/ _
  12.8 Yeast and like products  
- D+ f1 h9 ]2 A  12.9 Protein products  , R* b5 E, Z  ?. m/ f
  12.10 Fermented soybean products  
1 G1 P/ G6 Y- K  13.3 Dietetic foods intended for special medical purposes (excluding products of food category 13.1)  
3 }7 b2 C5 J" p3 f. o5 W" T  13.4 Dietetic formulae for slimming purposes and weight reduction  
, _/ h4 b* K+ |  13.5 Dietetic foods (e.g., supplementary foods for dietary use) excluding products of food categories 13.1 - 13.4 and 13.6  ! k; J( y4 `' ^4 e3 X% q: R: ?( ]
  13.6 Food supplements  " M  l% e7 J1 O5 X
  14.1.1.2 Table waters and soda waters  . R7 ~  `# ^) \# T. y/ y
  14.1.4 Water-based flavoured drinks, including "sport," "energy," or "electrolyte" drinks and particulated drinks  
8 b5 f+ y; m% a5 E8 B  14.2.1 Beer and malt beverages  5 l1 e, H4 k/ F! X% [2 r
  14.2.2 Cider and perry  3 u7 p$ S' Y3 ?5 B
  14.2.4 Wines (other than grape)  & [* l5 _  Y0 h0 U) L- f
  14.2.5 Mead  & e4 @( r, h, i* D6 a2 Y
  14.2.6 Distilled spirituous beverages containing more than 15% alcohol  
* h; T; ^9 ~8 ^+ v- E  14.2.7 Aromatized alcoholic beverages (e.g., beer, wine and spirituous cooler-type beverages, low alcoholic refreshers)  
7 V' z, o3 R* t% d: {4 B  15.0 Ready-to-eat savouries  
# l9 d9 m3 i$ D* ]  16.0 Composite foods - foods that could not be placed in categories 01 – 15% h- E2 D0 a* ^6 S

, u3 o* u7 f3 |( {0 t6 h* ~( }7 Q) ~% U8 X
部分译文:. B8 X$ }1 l, E1 U4 d. r; V/ {( x
9 {8 d9 K4 p4 V1 x  W
食品添加剂通用规则
2 [, H; j  L2 V) T/ g, N4 o# |食品添加剂
9 A. X5 ?! V% }% [5 B                    二氧化钛(171)6 s. |% d! Y7 z$ y
食品类别:
5 \# B# O# M  n6 |  I1 N) K0 I06.3 早餐谷类,包括燕麦片
/ w0 C, Y, x( r% }5 [7 A5 R06.4.3面条及类似产品
  d9 e( u/ J1 }, T06.5 谷类,淀粉甜点(包括:米粉布丁,木薯布丁)+ J+ b! ?3 ]" D
06.6 面团1 F/ x) |. [, r  Y9 B8 T
06.7 预煮的或加工的米产品,包括年糕(只包括中式的)06.8 Soybean products
, g" s  ]# J; z07.0 烘焙类8 Y2 I3 A9 J! D* V' ~
07.1 面包,普通烘焙类,以及其混合物6 f2 Z3 O, i! D# {$ B+ b
07.1.1 面包,面包卷1 Z5 [6 u% k$ q: {. e+ G. R
07.1.1.1 酵母发酵面包及特殊面包4 R  `) @' e; D, O& `
07.1.1.2 苏打面包
$ c& u2 C0 E- r# Y: P  q+ F7 n) R1 n% Z1 z. b* g. q

4 S$ a1 ]& ]' [2 [# G
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖 支持支持 反对反对
沙发
 楼主| 发表于 2008-5-23 12:10:00 | 只看该作者

二氧化钛(钛白粉)

二氧化钛(钛白粉)
6 X% P8 K7 d  J3 ~8 a
( M$ r2 }2 P/ i9 |JECFA关于二氧化钛(钛白粉)的结论4 N! Z3 j9 U7 }' c6 j. I
% ~- v' J" A5 h8 r+ z) z
摘要: 2006年JECFA关于二氧化钛的结论
1 p( _, W9 U& b' {ADI值:不作限制。
5 E; {  L- O- ~功能:着色剂
6 Q! n2 p0 \0 V" X  @
: `: k6 n% q. I+ Q0 Q/ s  m. h7 lTITANIUM DIOXIDE' `3 x: a- J* o7 M2 {
Prepared at the 67th JECFA (2006) and published in FAO JECFA( g0 @4 H$ `% s% w+ f* x
Monographs 3 (2006), superseding specifications prepared at the 63rd# _  ?- ]9 n& C
JECFA (2004) and published in FNP 52 Add 12 (2004) and in the
5 G( E1 l7 d- ]' a6 W7 P4 Q/ q4 ICombined Compendium of Food Additive Specifications, FAO JECFA
/ L% D: V& z( }! j" S9 S4 rMonographs 1 (2005). An ADI “not limited” was established at the 13th+ t. t2 w& }) f$ r2 Q7 i  T
JECFA (1969).
) U2 K, O7 a. mSYNONYMS
/ x) v( \& f/ B6 fTitania, CI Pigment white 6, CI (1975) No. 77891, INS No. 171
' n3 j, d1 g* CDEFINITION
# h1 o0 E; n% R2 q! \Titanium dioxide is produced by either the sulfate or the chloride+ {! {7 O7 U1 P6 S, Y: P. L7 r
process. Processing conditions determine the form (anatase or rutile
# e' K2 e% @! [, d4 a. dstructure) of the final product.
% u8 ?  ^) x% Z# t( FIn the sulfate process, sulfuric acid is used to digest ilmenite (FeTiO3)
0 I0 v3 `6 G/ G, v4 z' eor ilmenite and titanium slag. After a series of purification steps, the0 ^6 M3 ?0 d* m1 i3 \3 H# I
isolated titanium dioxide is finally washed with water, calcined, and
" u# j0 ]5 h2 X4 ~) ~micronized.
. g% W6 N: J/ |$ Z# N! U+ m$ FIn the chloride process, chlorine gas is reacted with a titaniumcontaining$ N+ w8 l7 T1 e! ]8 Q
mineral under reducing conditions to form anhydrous
" |% _7 C: G% m2 ]% x( e" Ptitanium tetrachloride, which is subsequently purified and converted to' w6 w. O$ n  ]. ]* L
titanium dioxide either by direct thermal oxidation or by reaction with
7 b2 L$ R0 h  [" b) Csteam in the vapour phase. Alternatively, concentrated hydrochloric
2 ?* v# Z6 c7 u. hacid can be reacted with the titanium-containing mineral to form a# {4 j4 k! L! A1 B! `! o% y6 }, q, t
solution of titanium tetrachloride, which is then further purified and
& N3 \% h; R/ \converted to titanium dioxide by hydrolysis. The titanium dioxide is5 F+ I) f: g/ b( E" d9 W- e& v
filtered, washed, and calcined.# `5 ]6 o  v) Z+ v& p+ z
Commercial titanium dioxide may be coated with small amounts of
# A7 u0 }1 u9 z: [; _1 Yalumina and/or silica to improve the technological properties of the
  H9 x" X- f# A" p4 z8 Lproduct.
' J, C  [& J( f+ ?( S/ N: mC.A.S. number 13463-67-7
+ C6 c" f  Y  w. Q, F7 E8 D: sChemical formula TiO2
/ w: ]. Q& }* c! {( yFormula weight) O8 S" t( V# H( l, P
79.88& Z$ ?& l* s$ }; K6 X- x) y  j
Assay5 p7 D3 {9 k2 r# H6 W, C) P% o
Not less than 99.0% on the dried basis (on an aluminium oxide and
5 R, d" S8 ^  V. `silicon dioxide-free basis)
' H- n% R& b+ n) ?DESCRIPTION3 K" i# _# B- A  r$ y9 r" w& p5 w
White to slightly coloured powder
& f1 x' z0 B8 K5 m7 `3 s6 t2 uFUNCTIONAL USES' ^" H9 n3 r8 M
Colour1 C0 }. X5 z" C
CHARACTERISTICS
3 I4 p. H  A# m% {# e5 `6 F- a& RIDENTIFICATION
3 j( v0 u1 Z, w5 D& o! pSolubility (Vol. 4)! J. P  C' n7 U9 @: z, x
Insoluble in water, hydrochloric acid, dilute sulfuric acid, and organic) F! c3 T& W: d+ g! v- F
solvents. Dissolves slowly in hydrofluoric acid and hot concentrated
" f& X* O+ u; A7 P2 gsulfuric acid.! J7 Y3 T2 K2 @4 M) Q( l
Colour reaction
1 E7 O8 f( f/ l) s# H: B3 B5 OAdd 5 ml sulfuric acid to 0.5 g of the sample, heat gently until fumes of
! c% L# |# F* w: \  d: L9 a( ~sulfuric acid appear, then cool. Cautiously dilute to about 100 ml with
. r& }/ i# o  s& z  Iwater and filter. To 5 ml of this clear filtrate, add a few drops of
" c2 W0 t0 }$ T. J4 }+ X! mhydrogen peroxide; an orange-red colour appears immediately.
9 x1 j& I) g! f) ~* ~  L. ]PURITY
6 w: X- S5 L2 uLoss on drying (Vol. 4) Not more than 0.5% (105°, 3 h), }  U; j$ V2 a
Loss on ignition (Vol. 4)
# p* U( n% z1 x+ ]" w4 B6 K' u2 JNot more than 1.0% (800o) on the dried basis
, G; Y% {2 D4 G8 U" }1 A9 y* C1 RAluminium oxide and/or
# i, a+ g# d, A/ \$ Asilicon dioxide
8 L7 x: v+ ~$ v" U1 i$ V# G; MNot more than 2%, either singly or combined3 F' c; x% `9 p+ U9 ]! E, [
See descriptions under TESTS) L, v3 \  {% `/ d3 X) d( m  O* b
Acid-soluble substances Not more than 0.5%; Not more than 1.5% for products containing' T5 T6 C; y+ ?5 J1 Y# I
alumina or silica.( U  [2 L0 j" Z; g7 d+ ?' L/ n
Suspend 5 g of the sample in 100 ml 0.5 N hydrochloric acid and
% m3 K& E0 T  ?$ [4 [place on a steam bath for 30 min with occasional stirring. Filter
! I9 |/ h" o+ g4 [7 _7 Bthrough a Gooch crucible fitted with a glass fibre filter paper. Wash- e% N) p9 Q" `- Q: K. \& U  y3 R
with three 10-ml portions of 0.5 N hydrochloric acid, evaporate the
! |( b/ H" [6 A/ n6 Q( @combined filtrate and washings to dryness, and ignite at a dull red
* m% i$ h. p' K- B( N& Uheat to constant weight.3 J" a9 j( M2 e0 {/ Z5 B6 Q+ i
Water-soluble matter, X+ H& {$ ]9 Y9 R( b! o
(Vol. 4)5 m. D9 X) x/ `6 ?6 f, m- Z
Not more than 0.5%
, A# G5 d+ p4 i( Z/ IProceed as directed under acid-soluble substances (above), using- Y+ J, L% k6 n/ U/ W
water in place of 0.5 N hydrochloric acid.: l5 G7 p# i. g: x' {& p
Impurities soluble in 0.5 N" p2 E/ I. L( R. f% u
hydrochloric acid/ V. F" R+ l, O
Antimony Not more than 2 mg/kg
. q. w: o" ^* m4 N+ N" VSee description under TESTS
, z5 N4 |# u% r) HArsenic Not more than 1 mg/kg
$ ?1 {: `# k; T2 A2 i; d* xSee description under TESTS
1 X3 D1 R) [5 c$ sCadmium Not more than 1 mg/kg
5 L  e% [6 F( R4 `  NSee description under TESTS. A4 v% A+ b, s* j
Lead
% ~" i3 i( _* I; LNot more than 10 mg/kg
; j: {' u( @2 D5 G! J/ a" v2 gSee description under TESTS; {. N1 G' b& M% D& M8 y" ?* }( G
Mercury (Vol. 4) Not more than 1 mg/kg! i3 [5 J6 k) `% V
Determine using the cold vapour atomic absorption technique. Select a
% N/ V# `" ^/ l" O* {sample size appropriate to the specified level
* w# I* S3 g' S) x. BTESTS
, B( l0 C/ ~% b3 bPURITY TESTS9 l4 B, {, g9 f7 y
Impurities soluble in 0.5 N
$ s, d5 {# ^+ y$ Y8 e: H/ W+ Zhydrochloric acid! Z2 C, Y9 x, W& g. @6 y; E
Antimony, arsenic,, R, p( v% \6 |$ ~9 K8 d5 X& X
cadmium and lead. C% o/ F& w# H1 ^( I& N2 V' V
(Vol.4)9 {: ^$ Y2 i6 N3 g$ h; F/ l5 Z
Transfer 10.0 g of sample into a 250-ml beaker, add 50 ml of 0.5 N
1 X' r# h; N. x7 ihydrochloric acid, cover with a watch glass, and heat to boiling on a% e2 b' u9 o" y% `
hot plate. Boil gently for 15 min, pour the slurry into a 100- to 150-ml
; X% C6 {: {! O' @  }centrifuge bottle, and centrifuge for 10 to 15 min, or until undissolved
3 o" x* F8 |* I: A. B( hmaterial settles. Decant the supernatant extract through a Whatman2 Z1 g( l! Y" o! Z4 o  R7 G4 F
No. 4 filter paper, or equivalent, collecting the filtrate in a 100-ml
' L" W& x7 d" {! F7 [  k; Tvolumetric flask and retaining as much as possible of the undissolved
8 w7 E' q! f" c+ Z) nmaterial in the centrifuge bottle. Add 10 ml of hot water to the original
/ S+ ^+ d9 Q" H& D8 ebeaker, washing off the watch glass with the water, and pour the
. ?) ?; {7 M+ H0 y7 Ncontents into the centrifuge bottle. Form a slurry, using a glass stirring
' G3 c9 Q  n2 s( ]5 S. m, Jrod, and centrifuge. Decant through the same filter paper, and collect$ |* D% ~) S, O- D& b
the washings in the volumetric flask containing the initial extract.
, E' h" P+ T7 cRepeat the entire washing process two more times. Finally, wash the& @9 f4 {' q3 U8 @
filter paper with 10 to 15 ml of hot water. Cool the contents of the flask
1 }9 V! Q  |; g5 i  Yto room temperature, dilute to volume with water, and mix.
6 G/ D) k& k* W- g/ Q7 A3 h1 R! cDetermine antimony, cadmium, and lead using an AAS/ICP-AES
! S3 M" ?/ U2 P9 ?/ u4 G9 U( t# Wtechnique appropriate to the specified level. Determine arsenic using the
: X+ _" z, V5 D# I; N0 T, YICP-AES/AAS-hydride technique. Alternatively, determine arsenic using  G1 H$ g- ]$ M% P$ L6 Q" h% o8 {
Method II of the Arsenic Limit Test, taking 3 g of the sample rather than
. g' U  C8 x6 m2 m, ^) Z1 g. The selection of sample size and method of sample preparation$ U9 n. f" b5 Z
may be based on the principles of the methods described in Volume 4.  F$ J! Q. J& R9 ?$ A( @
Aluminium oxide Reagents and sample solutions
& ~4 u- E1 I" @' y3 h$ I; F& u0.01 N Zinc Sulfate
( g6 C, f+ P( F: K. aDissolve 2.9 g of zinc sulfate (ZnSO4 ? 7H2O) in sufficient water to
0 T0 R* s$ w  O# n6 L2 r6 Ymake 1000 ml. Standardize the solution as follows: Dissolve 500 mg; J4 X; O0 `8 |* K" n
of high-purity (99.9%) aluminium wire, accurately weighed, in 20 ml of% _! j, @" Z1 H. M6 S
concentrated hydrochloric acid, heating gently to effect solution, then8 X9 Y2 }! ?) Z! g6 e
transfer the solution into a 1000-ml volumetric flask, dilute to volume
. _! Z" C9 F( M* O- E9 ~: awith water, and mix. Transfer a 10 ml aliquot of this solution into a 5009 R  C* W( r- h4 U
ml Erlenmeyer flask containing 90 ml of water and 3 ml of( \+ s1 n8 t' O
concentrated hydrochloric acid, add 1 drop of methyl orange TS and
, k4 b# D: b* S5 f) d25 ml of 0.02 M disodium ethylenediaminetetraacetate (EDTA) Add,+ H, \$ C% Z9 S% |/ _- G4 @, o" x
dropwise, ammonia solution (1 in 5) until the colour is just completely) K* y" k! Z- Z; C* D
changed from red to orange-yellow. Then, add:
) g" i/ c( L. i9 f3 z! u(a): 10 ml of ammonium acetate buffer solution (77 g of! r$ z0 {  |+ L* M! e( d
ammonium acetate plus 10 ml of glacial acetic acid, dilute to1 I+ ^0 H; R8 Y4 X
1000 ml with water) and
% n9 i  a  g6 L" \- U8 M! l, d(b): 10 ml of diammonium hydrogen phosphate solution (150 g/ g, o4 f- N) t/ ^
of diammonium hydrogen phosphate in 700 ml of water,
2 V8 |2 z9 U% m  o' jadjusted to pH 5.5 with a 1 in 2 solution of hydrochloric acid," K9 P7 {3 s$ Y, L
then dilute to 1000 ml with water).
0 o. Q+ C& r5 {7 uBoil the solution for 5 min, cool it quickly to room temperature in a
& N) Y5 Y3 T/ {" y5 n. qstream of running water, add 3 drops of xylenol orange TS, and mix.
0 T& @  y) t6 A1 i/ _- G: LUsing the zinc sulfate solution as titrant, titrate the solution to the first
+ i2 b: z. S2 n6 K* A$ k4 Jyellow-brown or pink end-point colour that persists for 5-10 sec. (Note:
9 I- O7 {4 ?/ W8 gThis titration should be performed quickly near the end-point by
- ]' h6 T, N3 ^! Sadding rapidly 0.2 ml increments of the titrant until the first colour
3 l/ ~! [% ]' M0 E1 Q5 i# }change occurs; although the colour will fade in 5-10 sec, it is the true8 z7 Z5 h) {+ w( X
end-point. Failure to observe the first colour change will result in an
2 D- O7 p# s5 O4 I4 _incorrect titration. The fading end-point does not occur at the second: \$ G0 d. D: W/ {
end-point.)8 i* B2 K& q; V/ L
Add 2 g of sodium fluoride, boil the mixture for 2-5 min, and cool in a
0 W) O4 ^2 u2 O/ B% D8 E9 ystream of running water. Titrate this solution, using the zinc sulfate
3 P$ s2 N0 Q" f$ B7 hsolution as titrant, to the same fugitive yellow-brown or pink end-point7 y  h3 D7 R7 @/ T  s- ?5 B
as described above.3 w: m& H" H9 ~9 w
Calculate the titre T of zinc sulfate solution by the formula:5 W6 d* ?3 Q4 b- T
T = 18.896 W / V: E! o- R& W9 A6 c
where
0 q$ R/ n/ g  |( t7 o/ K4 p+ K1 aT is the mass (mg) of Al2O3 per ml of zinc sulfate solution
  W  t: x* A# L* F+ kW is the mass (g) of aluminium wire
' E( R7 |: Y4 eV is the ml of the zinc sulfate solution consumed in the& I8 _2 M! [; _
second titration
. D7 k& X, ]* |  \7 O18.896 = (R × 1000 mg/g × 10 ml/2)/1000 ml and8 E2 `( ]4 N8 R4 `* N# l
R is the ratio of the formula weight of aluminium oxide to
/ @4 b1 s/ P& Pthat of elemental aluminium.+ A, u) H& y" T. ~* n, K
Sample Solution A
7 z  [8 D0 \3 W; [8 O) u1 X* M6 yAccurately weigh 1 g of the sample and transfer to a 250-ml high-silica9 ~0 z) M! P1 u5 p- j" o% t
glass Erlenmeyer flask. Add 10 g of sodium bisulfate (NaHSO4 ? H2O).
) G; N( p  m0 P, l. M$ _# G(Note: Do not use more sodium bisulfate than specified, as an excess
/ j. w4 {8 l4 p+ \5 Q; Dconcentration of salt will interfere with the EDTA titration later on in the6 z  E) i$ ~/ O& i/ T
procedure.) Begin heating the flask at low heat on a hot plate, and
( j) D3 f( U4 ythen gradually raise the temperature until full heat is reached., z+ F. x5 D4 f4 _* t* s! r# n, F" X
(Caution: perform this procedure in a well ventilated area. ) When
; e; E2 ?. e4 I& [4 G) U4 L( lspattering has stopped and light fumes of SO3 appear, heat in the full0 e) `" J" k" d" W* m
flame of a Meeker burner, with the flask tilted so that the fusion of the  A3 S5 j5 a( K  l- Q" i, S, ^
sample and sodium bisulfate is concentrated at one end of the flask.. Q/ S# P1 f5 k  u2 A: b4 A
Swirl constantly until the melt is clear (except for silica content), but
' [% i9 N! _' d9 ~- N( y. Aguard against prolonged heating to avoid precipitation of titanium5 {  C/ y! }7 @" ]) I3 p+ M0 B
dioxide. Cool, add 25 ml sulfuric acid solution (1 in 2), and heat until
: o- \" _$ H7 G0 u  A, Gthe mass has dissolved and a clear solution results. Cool, and dilute to
  Y7 W$ P3 g$ S% e' c# Y9 l1 G120 ml with water. Introduce a magnetic stir bar into the flask.' @" \& G8 ?" i" d
Sample Solution B
8 |1 s( u; i# r& c( RPrepare 200 ml of an approximately 6.25 M solution of sodium4 s% n& T6 \: x5 X" k
hydroxide. Add 65 ml of this solution to Sample Solution A, while
' T8 p+ X0 {% P& F& _stirring with the magnetic stirrer; pour the remaining 135 ml of the7 [$ w) V% H7 y# p; Z
alkali solution into a 500-ml volumetric flask.
% @9 Q( d5 K" Y+ [2 V8 x! M& F( l5 X; YSlowly, with constant stirring, add the sample mixture to the alkali
( n4 F  @* p$ u, q) Ksolution in the 500-ml volumetric flask; dilute to volume with water,
9 W, K# a" u3 m& r" Vand mix. (Note: If the procedure is delayed at this point for more than# M2 i2 K* k# V! J3 t, u* F
2 hours, store the contents of the volumetric flask in a polyethylene. G/ I4 _  K% T! W3 o) _& s5 d
bottle.) Allow most of the precipitate to settle (or centrifuge for 5 min),* ]; ?7 u/ G- ~1 p: B0 F5 [6 ^
then filter the supernatant liquid through a very fine filter paper. Label
) N9 x! T! l: G6 uthe filtrate Sample Solution B.$ N. z7 j7 Y. v5 Z, \) {) E
Sample Solution C
. |3 d* b. `! R. C, ATransfer 100 ml of the Sample Solution B into a 500-ml Erlenmeyer9 v6 l/ B/ d1 f, w( B  O# ?
flask, add 1 drop of methyl orange TS, acidify with hydrochloric acid
; R% Q) N: {9 m: q1 {; H( Ssolution (1 in 2), and then add about 3 ml in excess. Add 25 ml of 0.02
& M3 x, X6 m7 i; m+ `3 M* R( |- nM disodium EDTA, and mix. [Note: If the approximate Al2O3 content is+ D. Y6 W) r2 ~. L% E# O- Q6 p- o
known, calculate the optimum volume of EDTA solution to be added! l: E! m% r; l# l) [7 ?) |2 Q2 [- F
by the formula: (4 x % Al2O3) + 5.]
! [- H4 g( H# cAdd, dropwise, ammonia solution (1 in 5) until the colour is just9 F8 a9 ~+ Y- d$ x  P1 t
completely changed from red to orange-yellow. Then add10 ml each. z& B3 `$ A$ \+ _4 w' D+ D
of Solutions 1 and 2 (see above) and boil for 5 min. Cool quickly to
2 h" q: B8 C, S3 N0 _) f6 d) ]+ _/ Sroom temperature in a stream of running water, add 3 drops of xylenol2 p# I! N, b4 F; I( c- O0 k2 ?
orange TS, and mix. If the solution is purple, yellow-brown, or pink,( H. p" D! M2 e
bring the pH to 5.3 - 5.7 by the addition of acetic acid. At the desired
  j8 y4 _" Z  r; {# ~pH, a pink colour indicates that not enough of the EDTA solution has" C; [, Y& {  D" E$ k4 K
been added, in which case, discard the solution and repeat this
; J! }% d0 a# K4 z/ Wprocedure with another 100 ml of Sample Solution B, using 50 ml,
$ i3 I, i3 f# Z( J9 D+ z8 N2 @rather than 25 ml, of 0.02 M disodium EDTA.; {. J, X' ~; l- M0 C& N9 B9 H
Procedure. n  n, j; A$ s5 N) o5 N
Using the standardized zinc sulfate solution as titrant, titrate Sample) G2 C! x& n6 ]5 e* z
Solution C to the first yellow-brown or pink end-point that persists for
; u/ \0 k6 V% P  O: U+ h4 N/ A5-10 sec. (Important: See Note under “0.01 Zinc sulfate”.) This first
: Q  E2 u8 J0 a8 Atitration should require more than 8 ml of titrant, but for more accurate2 ?. ]; F" @' S9 |
work a titration of 10-15 ml is desirable.
& g; K. p) ^) C. l3 EAdd 2 g of sodium fluoride to the titration flask, boil the mixture for 2-5
, I" d. T$ Z, U; kmin, and cool in a stream of running water. Titrate this solution, using# q7 w) Q1 J* D/ t& y
the standardized zinc sulfate solution as titrant, to the same fugitive/ h1 a3 U2 b" J5 r9 I
yellow-brown or pink end-point as described above.0 {/ t7 f1 B# W+ w& b
Calculation:
1 [7 a, ]! f" J  pCalculate the percentage of aluminium oxide (Al2O3) in the sample
4 k3 t* @4 J' ]) K; `  Xtaken by the formula:2 F( a% a7 I" j1 w2 v  R7 G$ O
% Al2O3 = 100 × (0.005VT)/S# E) g$ _  x; z& m: L- c
where7 X, A/ C: m. b7 u; y! |
V is the number of ml of 0.01 N zinc sulfate consumed in
; D" r0 s9 V  N7 f" r) E$ w6 g# s) Mthe second titration,$ s" p: c0 ^, e4 d0 x' M
T is the titre of the zinc sulfate solution,
0 X( e4 S- \0 b1 n5 r1 jS is the mass (g) of the sample taken, and
: c" x5 M. |9 H; L0.005 = 500 ml / (1000mg/g × 100 ml).
) ?  h  w, K- Q8 h" u! a" CSilicon dioxide Accurately weigh 1 g of the sample and transfer to a 250-ml high-silica
! ~+ }) r( u' w" bglass Erlenmeyer flask. Add 10 g of sodium bisulfate (NaHSO4 ? H2O).7 p6 c+ ~' P* a9 i, E  `9 o
Heat gently over a Meeker burner, while swirling the flask, until
; p2 R9 {2 F6 K% A0 }decomposition and fusion are complete and the melt is clear, except
1 K2 S: m& B, q3 R% F* Cfor the silica content, and then cool. (Caution: Do not overheat the
2 @! }9 Z7 O& b. f: R( D$ dcontents of the flask at the beginning, and heat cautiously during. \: t& Z1 O* B
fusion to avoid spattering.)) _! i" ~2 J; }' \/ S; \. G
To the cooled melt add 25 ml of sulfuric acid solution (1 in 2) and heat0 ^4 k7 l9 C5 K
carefully and slowly until the melt is dissolved. Cool, and carefully add
  J, n) a! a; w3 a150 ml of water by pouring very small portions down the sides of the) u( {8 {  T+ Z3 p! _1 }
flask, with frequent swirling to avoid over-heating and spattering. Allow) |3 J9 x( g' b5 a3 t9 W$ V5 m1 I
the contents of the flask to cool, and filter through fine ashless filter
( X: z6 P, V- W5 O* opaper, using a 60 degree gravity funnel. Rinse out all the silica from
( w) U$ s$ @9 Q( Vthe flask onto the filter paper with sulfuric acid solution (1 in 10).
" {1 p! H. F/ d4 z7 h" dTransfer the filter paper and its contents into a platinum crucible, dry in2 ]* t4 @2 w7 S9 r* w% @8 p' `2 k$ U
an oven at 1200, and heat the partly covered crucible over a Bunsen
6 ^7 Y, y9 p5 I; @- iburner. To prevent flaming of the filter paper, first heat the cover from: h! I  P6 B; M9 ~% {# h1 G9 ^
above, and then the crucible from below.
7 Z$ u: u. S, Z+ ]% L6 f4 tWhen the filter paper is consumed, transfer the crucible to a muffle
8 m5 h7 N0 V- y" J4 A2 bfurnace and ignite at 1000o for 30 min. Cool in a desiccator, and7 K8 T% v! t; W4 |" O# }
weigh. Add 2 drops of sulfuric acid (1 in 2) and 5 ml of concentrated0 ~7 g) L0 T$ O  ?9 E  d) b  i
hydrofluoric acid (sp.gr. 1.15), and carefully evaporate to dryness, first- m- g6 C9 F" k* [" e
on a low-heat hot plate (to remove the HF) and then over a Bunsen
6 D  S& M: z, x" b) O; \burner (to remove the H2SO4). Take precautions to avoid spattering,0 W5 l% A/ `1 z0 C+ G
especially after removal of the HF. Ignite at 1000o for 10 min, cool in a
% l- E7 Y1 Y2 N. U3 y6 }* x) ^desiccator, and weigh again. Record the difference between the two. E/ N3 C  p$ O% k4 `! U' P4 X
weights as the content of SiO2 in the sample.
( C& o# @" x) B& W% h2 }$ FMETHOD OF ASSAY" K2 s! p+ m) T
Accurately weigh about 150 mg of the sample, previously dried at 105o
: `& g/ O7 T9 I8 w  _5 \for 3 hours, and transfer into a 500-ml conical flask. Add 5 ml of water) H7 l& x. F6 Z* q; d2 {
and shake until a homogeneous, milky suspension is obtained. Add 30
. a  e' @) T# A0 Uml of sulfuric acid and 12 g of ammonium sulfate, and mix. Initially, L  l4 e3 \- i- T+ @7 v
heat gently, then heat strongly until a clear solution is obtained. Cool,
! j5 e& C% l2 f" Y# y5 n. A( E, bthen cautiously dilute with 120 ml of water and 40 ml of hydrochloric
( u8 h  W, q: s% {9 ]; W7 uacid, and stir. Add 3 g of aluminium metal, and immediately insert a4 o( P3 w! W- V' Y" h1 F
rubber stopper fitted with a U-shaped glass tube while immersing the- r& x3 _  B% H, w
other end of the U-tube into a saturated solution of sodium
$ p  m7 A$ R2 F# l1 _' Fbicarbonate contained in a 500-ml wide-mouth bottle, and generate
) u- ?7 J. E  z6 Thydrogen. Allow to stand for a few minutes after the aluminium metal& O7 ]6 k" f3 W# @6 \
has dissolved completely to produce a transparent purple solution.
" Q/ }6 G+ }  p, N# S2 F, K- TCool to below 50o in running water, and remove the rubber stopper
" x1 y  V2 ?* m$ `" S0 U* `2 i/ gcarrying the U-tube. Add 3 ml of a saturated potassium thiocyanate
  e1 B3 t/ f6 esolution as an indicator, and immediately titrate with 0.2 N ferric1 X. |9 w- \' d
ammonium sulfate until a faint brown colour that persists for 30
" t6 @  q- H0 p. m0 Lseconds is obtained. Perform a blank determination and make any
& ]4 O  g, f, Y, `) A0 t( m* g3 E3 Onecessary correction. Each ml of 0.2 N ferric ammonium sulfate is
7 ~- E8 Y! ?- h) M: S. Z" Wequivalent to 7.990 mg of TiO2., e, z0 T& i8 X, F9 e3 {
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|申请友链|手机版|华讯行业网 ( 桂B2-20030027  

GMT+8, 2025-1-21 00:00 , Processed in 0.034518 second(s), 23 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表